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Results are  presented for a numerical  solution of the problem of shock-wave propagation in 
a cold, low-densi ty p lasma ac ros s  a magnetic field with finite conductivity and e lec t ron ther -  
mal conductivity present ;  a compar ison is made with resul ts  obtained f rom a solution without 
considerat ion of thermal  conductivity. It is shown that the effect  of thermal  conductivity can 
be neglected for small  Mach numbers (M<2.5). An isomagnetic density discontinuity is ob- 
tained for Mach numbers 2.8 ~ M ~ 3.3. Increase  in the magnetic field amplitude at the bound- 
ary  of the p lasma leads to a breakdown of the isomagnetic discontinuity. The cr i t ica l  Mach 
numbers which charac te r ize  the shock wave in this case are  M ,  > 3.4. 

At the present  t ime one should accept  as proven the fact that there  are  cr i t ical  Mach numbers M~ for 
which a qualitative change occurs  in the s t ructure  of shock waves in a low-densi ty p lasma [1, 2]. As is well 
known, a s imi lar  phenomenon occurs  in an ord inary  thermal ly  conducting gas - an isothermal  density dis-  
continuity. A careful  study of s ta t ionary shock waves in a p lasma without magnetic field but including Cou- 
lomb conductivity and thermal  conductivity was made by V. S. Imshennik [3]. He showed that both continu- 
ous and discontinuous (isoelectron thermal discontinuity) solutions were possible depending on the velocity 
of the wave. Morton [4] studied s tat ionary and nonstationary compress ion  waves in a two-fluid p lasma with 
magnetic field present ;  however, the effect of energy dissipation,which is neces sa ry  fcc creat ion of shock 
waves, was not considered in his paper  and the effect of thermal  conductivi ty was not taken into account. 
From an analysis of the singulari t ies  of the equations for the s t ruc ture  of a shock wave with conductivity 
and thermal  conductivity present ,  Woods [5] found the cr i t ical  p a r a m e t e r s  for which the solution became 
discontinuous. The authors investigated the problem of the s t ruc ture  of nonstat ionary and s ta t ionary shock.  
waves in plasma ac ros s  a magnetic field including considerat ion of conductivity and e lec t ron thermal  con- 
ductivity. 

1. S Y S T E M  OF E Q U A T I O N S  A N D  I T S  S T A T I O N A R Y  S O L U T I O N S  

For one-dimensional  motion of a two-fluid quasineutral  p lasma ac ros s  a magnetic field including con- 
sideration of conductivity, dispersion,  and electron thermal  conductivity, we have the following sys tem of 
equations: 

ap a a a (  H ~ ) 
Wi" + ~ (pu) = O, a--7 (pu) + ~ p + ~ + pu ~ = 0 

a r 3  . H ~ t m~mec2,aH,~l a { [5  , 

~--~- + 32~'e~p - - ~ H - ~ - z  --% ax i6~'-e ~ "0"[--~- (1.1) 

,.--~----aTz ]j = O, p = N T  

a l l .  a{  c~ a~z ,nem~c~(~ t l d H ~  
--Ot az uH 4~z Ox 4~e 2 ~- u~]d ~(~7_Zz ;,~ ~ 0 . 
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Here ,  p = N(m i + me)  i s  the  p l a s m a  d e n s i t y ,  N i s  the number  of p a r t i c l e s  of e ach  k ind  p e r  un i t  vo lume ,  
o- i s  the  p l a s m a  conduc t iv i t y ,  and • is  the c o e f f i c i e n t  of e l e c t r o n  t h e r m a l  conduc t iv i ty .  The l a s t  two t e r m s  
in the  b r a c e s  in the  e n e r g y  equa t ion  g ive  the Jou le  h e a t i n g  of the e l e c t r o n s  and the  e f f ec t  of t h e r m a l  c o n d u c -  
t iv i ty .  

F o r  s o l u t i o n  of the  s t a t i o n a r y  p r o b l e m  we sh i f t  to a c o o r d i n a t e  s y s t e m  c o n n e c t e d  with the  wave .  We 
sha l l  c o n s i d e r  m o t i o n  on a t y p i c a l  s p a t i a l  s c a l e  which  r e s u l t s  f r o m  the f in i te  c onduc t i v i t y  bu t  not f r o m  d i s -  
p e r s i o n ;  we t h e r e f o r e  n e g l e c t  d i s p e r s i o n  e f f ec t s ,  which  a r e  p r o p o r t i o n a l  to e l e c t r o n  m a s s .  Using the con -  
t inu i ty  of m a s s  and m o m e n t u m  flow and sh i f t ing  to d i m e n s i o n l e s s  v a r i a b l e s ,  hav ing  s e l e c t e d  a s  the s c a l e s  
for  d e n s i t y ,  ve loc i t y ,  p r e s s u r e ,  m a g n e t i c  f ie ld ,  l e ng th ,  and c o l l i s i o n  f r e q u e n c y  the  qua n t i t i e s  P0, 

VA = Ho / 41/4-~o, H o  s / 4 ~ ,  Ho 

c 2 eHo 
8 = 4 ~ o v A  , (o = "V~"~----~ 

(~0 = N0e2/me v ,  v = c o n s t  i s  the  e f fec t ive  c o l l i s i o n  f r equency) ,  we obta in  

C u ~ = - ~ - u  - -  - -  

P = Po q-  0 . 5  + M ?  - -  M u  - -  0 . 5 H  s 

C = 0 . 5  M ( 5 p o + M  s + 2 ) .  

(1.2) 

He re  M is  t he  Mach n u m b e r  (M = U/VA,  w h e r e  U is  the  wave ve loc i ty ) ,  u i s  the  p a r t i c l e  v e l o c i t y  in the  
wave  s y s t e m ,  

[3 = K~ = const, g = n v 
NNoo6'z , ~ = 

Thus  the p r o b l e m  of  the s t r u c t u r e  of  a s t a t i o n a r y  shock  wave  wi th  f in i te  c onduc t i v i t y  and e l e c t r o n  t h e r -  
m a l  c o n d u c t i v i t y  p r e s e n t  r e d u c e s  to  a s y s t e m  of two o r d i n a r y  equa t ions  (1.2). The s i n g u l a r i t i e s  0 and 1 of 
s y s t e m  (1.2) c o r r e s p o n d  to the  s t a t i o n a r y  s t a t e s  of the  p l a s m a  ahead  of the  wave  (unpe r tu rbed  s t a te )  and b e -  
h ind  the  wave  ( p e r t u r b e d  s t a t e ) .  

u0 = M, H0 = t ,  P0 (1.3) 

M M s  pl ~ po ~ 0.5 (Hs ~ - -  1) po (4M - -  t) -b 0.5 (Hx - -  t) 8 
ul = " ~ '  = l -- H1-1 , Pl =- 4 --  H~ (1.4) 

Equa t ion  (1.4) i s  the  Hugoniot  condi t ion  for  m o t i o n  a c r o s s  a m a g n e t i c  f ie ld .  

As a n a l y s i s  shows ,  the  so lu t i on  in the  c a s e  u n d e r  c o n s i d e r a t i o n  i s  d i s c o n t i n u o u s  when the coe f f i c i en t  
of the  d e r i v a t i v e  goes  to z e r o ,  i . e . ,  Pl  = Mul, whence  we obta in  an equa t ion  for  d e t e r m i n a t i o n  of the c r i t i c a l  
p a r a m e t e r s  M,  and H,  of  a s h o c k  wave :  

�9 t s i" 2M*Z M . S - ? p o - - - - ~ z - ( H , - : - -  ) - - - - ~ - .  = 0 .  

Under  a c t u a l  cond i t i ons  P0 << 1; t h e r e f o r e ,  u s i n g  Eqs .  (1.4), we ob ta in  an equa t ion  fo r  the c r i t i c a l  a m -  
p l i t ude  of the  m a g n e t i c  f i e l d  beh ind  the wave  f r o n t :  

H ,  S - -  3H.  s ~ 2H,  - -  6 = 0 

whence  i t  fo l lows  tha t  H .  = 3. 

Thus ,  wi th  t h e r m a l  c o n d u c t i v i t y  and conduc t iv i t y  p r e s e n t ,  the  p r o f i l e  of the  s h o c k  wave  i s  mono ton ic  
fo r  H 1 < H,  = 3, M < M,  = 3.46 and d i s con t inuous  for  H 1 > 3, M > 3.46. Th i s  r e s u l t ,  of c o u r s e ,  a g r e e s  wi th  
the r e s u l t  of [5], w h e r e  i t  was  ob ta ined  on the b a s i s  of c l a s s i f i c a t i o n  of the s i n g u l a r i t i e s  of  the o r i g i n a l  e q u a -  
t ion s y s t e m .  Note tha t  the va lue  of the c r i t i c a l  Mach numbe r ,  M~ = 3.46, is  i ndependen t  of the  s p e c i f i c  f o r m  
of  the  t h e r m a l  c o n d u c t i v i t y  coe f f i c i en t .  

If the e f f ec t  of t h e r m a l  conduc t i v i t y  i s  neg l ec t ed ,  conduc t iv i t y  a lone  be ing  p r e s e n t ,  the c r i t i c a l  p a r a m -  
e t e r s  of a shock  wave  a r e  H ,  ~ 2.66,  M,  ~ 2.76.  
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We shall determine numerical ly  a nonlinear solution of the problem of the s t ruc ture  of a s ta t ionary 
shock wave in a p lasma with conductivity and thermal  conductivity present .  For this purpose it is neces-  
sa ry  to make an analysis  of the kinds of singulari t ies 0 and 1 which cor respond  to the unperturbed and p e r -  
turbed plasma states.  Linearizing Eqs. (1.2) near the singulari t ies,  i.e., assuming that 

U = Uo,l + u ' ,  H ---- Ho, i  + H ~ (u' ~ uo,1, H' ~ H0,1) 

we obtain a charac te r i s t ic  equation, the roots  of which for the unperturbed state are  

- -  - -5-  " 

(0) It then follows that the roots  k , independentl~ of Mach number M > 1, are  real  and of the same sign; 
therefore  the singulari ty 0 is a node. The roots k(llof the charac te r i s t ic  equation for the per turbed slate 
depend on Mach number; for M < 3.46 and H i < 3, they are  real  and of opposite sign (singularity 1 is a sad-  
dle point), and for M > 3.46 and H i > 3, they are  real  and of the same sign (singularity 1 is a node). Thus 
when the shock-wave velocity is less  than cri t ical ,  the singulari t ies 0 and 1 form a node-saddle-point  pair  
as in an ordinary gas. 

P roof  of the existence and uniqueness of the solution in this case can be demonstra ted as in [6], for 
example. When the shock-wave velocity is g rea te r  than cr i t ical ,  it is impossible to const ruct  a profile which 
is continuous over all functions. 

Using the analysis made above, a solution was obtained numerical ly  for sys tem (1.2) which gives the 
s t ructure  of a s ta t ionary shock wave. 

Given below are the widths Ap of the par t ic le  
various Mach numbers.  

H1 2.60 2.70 2.80 

M 2.66 2.83 3.02 

Ap 0.46 0.34 0.24 

A H 0.90 0.80 0.70 

As usual, the width of the front is determined 

Ap = Pl - -  t 
[ dp / dx [max ' 

density profile and A H of the magnetic field profile for 

2.90 2.93 2.95 2.98 2.99 

3.23 3.29 3.34 3.41 3.44 

0.t6 0.t4 0.t2 0.t0 0.09 

0.60 0.58 0.56 0.55 0.53 

from the express ions  
H1- -  I 

A H  = ] "~-'H-/ dx  [max 

As the Mach number increases ,  the density profile becomes increas ingly  s teeper  as compared  to the 
magnetic field profile.  

It is c lear  that the width of the density profile dec reases  by approximately  a factor  of 5 with a change 
in Mach number f rom 2.66 to 3.44 while the width of the magnetic field profi le falls by a factor of approxi-  
mately  1.5. The sharp increase  in the slope of the density profile when M --M~, = 3.46 is evidence that this 
profile tends to become discontinuous. Calculations for various thermal  conductivity coefficients X show 
that for an unchanged width of the magnetic field front the width of the densi ty profile increases  as the the r -  
mal conductivity coefficient increases .  Thus, for the case M -- 3.44, we have 

A p = 0 . 0 9  for ~ =2 .0 ,  
Ap = 0.18 for ~ ---- 20. 

2. NONSTA TIONARY SOLUTIONS 
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The equation sys tem (1.1), wri t ten in dimensionless  variables 
and Lagrangian coordinates,  was solved on a computer  using a dif- 
ference scheme of second-order  accuracy.  Assuming that at  the 
initial t ime a uniform, quasineutral,  cold p lasma (P0 << H~/87r ) of 
density N o occupies the region 0 -< x -< a (direction of unperturbed 
magnetic field coincides with the x axis), on the boundary of which 
the magnetic field is increasing in accordance  with the expression 
H = 1 + A ( 1 - e  -0  r ) (0  is the frequency of the external  field in units 
of w; A is the amplitude of the external  field in units of H0) , we 

Fig. 1 
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wri t e  the fol lowing ini t ial  and boundary  condi t ions  for  the solut ion of s y s t e m  (1.1) : 

H (0, ~) = I + A (t - -  e -~ 
OT (0, T) = 0 p (0,'~) -= O, -~z 

O~ (a, ~) = O, oe (a, ~) = 0 
0---2" -gT" 

u (a ,x )  = 0, H(x ,  0) : N(x ,  0) = i 

u (x, 0) = p (x, 0) = 0 

Here ,  T is t ime  in units  of vc/w, T is e l e c t r o n  t e m p e r a t u r e  in uni ts  of H~/SvN0, and p is p r e s s u r e  in 
uni ts  of H20/81r. 

We t u r n  to a d i s c u s s i o n  of the r e su l t s  obtained for  a solut ion of the given p r o b l e m  for  sma l l  Mach 
number s  M < 2.5. Fo r  ampl i tude  values  1.5 -< A < 2 at the boundary  of the p l a s m a  the shock  wave p roduced  
is quas i s t a t iona ry ,  i .e . ,  f r o m  s o m e  point  in t ime T (T depends on the boundary  condi t ions  for  the magne t i c  
field) the ve loc i ty  and ampl i tude  of the wave and the width of  the f ront  r e m a i n  p r a c t i c a l l y  constant .  

Note tha t  the Mach number  for  a shock  wave was d e t e r m i n e d  f r o m  the points  of m a x i m u m  s lope of the 
magne t i c  field, i .e . ,  M = (x2 -x0 / (T2 - r l ) ,whe re  x 1 and x 2 a r e  the Eu le r i an  coord ina t e s  of max  t OH/0x[ in the 
shock  f ron t  a t t h e t i m e s  T 2 and T 1. 

Typ ica l  p ro f i l e s  of  the magne t ic  field H (curve 1) and of p a r t i c l e  dens i ty  N (curve 2) for  a quas i s t a t ion -  
a r y  s h o c k  wave 

(A~t.5, 0=0.2, x~ t0 ,  ~=2,  M~2.2) 

which a r e  shown in Fig. 1 as  a function of the Eu le r i an  coord ina tes ,  have the fol lowing c h a r a c t e r i s t i c  r e g i o n s :  

1. the p i s ton  reg ion ,  which is a s soc i a t ed  with diffusion of the magne t i c  field into the  p l a s m a  to a d i s -  
tance  5 l ~ (c2t/4~ra)~/2; in this reg ion  the re  is a cont inuous  t r ans i t i on  f r o m  the magne t i c  field m a x i m u m  at 
the boundary  of the p l a s m a  to a value equal to the ampl i tude  of the shock  wave;  the t e m p e r a t u r e  behaves  in 
a s i m i l a r  manner ,  and the dens i ty  r i s e s  f r o m  z e r o  to a m a x i m u m  value;  

2) the r e g i o n  of p i s t o n - s h o c k - f r o n t  t rans i t ion ,  in which the magne t i c  field, t e m p e r a t u r e ,  and dens i ty  
a r e  p r a c t i c a l l y  unchanged;  

3) shock  f ront  with a width A equal to the d i s s ipa t ive  d imens ion  A ~ c2/4~r~VA. 

The dens i ty  p rof i l e  l ags  behind the magne t i c  field prof i le  by a d i s t ance  5 2 ~ 0.65 ~ c2/47r~VA(M-1) , as  
should  be expec ted  fo r  a r e s i s t i v e  d iss ipa t ive  m e c h a n i s m  in the shock  front .  A c h a r a c t e r i s t i c  fea ture  of a 
q u a s i s t a t i o n a r y  shock  wave is the p r e s e n c e  of  r eg ion  2, which a r i s e s  at  the t ime the wave l eaves  the p is ton.  
Note tha t  for  l a r g e  va lues  of the ex te rna l  f ield ampl i tude  (for example ,  A = 10, 0 = 0.2) a shock  wave is not 
f o r m e d  and "p i l ing-up"  of the p l a s m a  by  the ex te rna l  magne t i c  field occu r s .  

Values  of  the e l e c t r i c  f ie lds  and of the potent ia l  can  be found f r o m  the equat ions  of mot ion :  

Fig. 2 

m~ 0 ( rn~ -- rne H~ ) 
Ex  = eN (m i + me) Ox P ~'- m , ~  8~t 

E ~ =  t ( uH  c~ OI-I) i "-g'- 4~tr cgz ' q~ = Exdx  " 

The behav io r  of the y componen t  of the e l ec t r i c  field is s i m i l a r  to the 
behav io r  of the magne t i c  field; the x componen t  of  the e l e c t r i c  field has  a p a r a -  
bol ic  f o r m  with the m a x i m u m  in the shock  f ront  s ince  in p r e c i s e l y  that  
p lace  a l a rge  field is needed for  r ea l i za t i on  of the quas ineu t ra l i ty  and of the 
condit ion.  The dependence  of  the x componen t  of the e l e c t r i c  field (curve 1) 
and of the potent ia l  (curve 2) on the Eu le r i an  coo rd ina t e s  in a quas i s t a t i 0 n a ry  
shock  wave with the p a r a m e t e r s  A = 1.5, 0 = 0.2, vr = 10, and fl = 2 is shown 
in Fig.  2. The dashed  l ine g ives  the value of the potent ia l  ~ ,  behind a s t a -  
t i ona ry  shock  front ,  which was  obtained f r o m  the Hugoniot  condi t ion 

2• "c " 
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A compar ison of the solutions of the problem for small  Mach numbers CM < 2.5) for thermal  conduc- 
tivity coefficient values X = 0 and X ~ 0 showed that inclusion of thermal conductivity leads only to an in- 
significant increase  in the width of a quasis ta t ionary shock front (width of shock front for fl = 2 was approx-  
imately 2% grea te r  than width of the front for fl = 0), i.e., the effect of thermal  conductivity on the s t ruc ture  
of the shock front is insignificant for small  Mach numbers.  The solution of the nonstat ionary problem for 
M < 2.5 is in good agreement  with the s tat ionary solution. 

We consider  the resul ts  for Mach numbers M > 2.5. For compar ison we make a br ie f  analysis  with- 
out considerat ion of e lectron thermal  conductivity (X = 0). Increase  in the magnetic field amplitude at the 
p lasma boundary leads to an increase  in amplitude and velocity of the shock wave. In this case there is an 
enhancement of the effects of nonlinearity and nonstationarity, through which the s t ruc ture  of the shock front 
is qualifatively changed. Thus for an external magnetic field amplitude A > 2.6, the shock wave without con- 
sideration of thermal  conductivity is nonstationary, i.e., its velocity and width of front change continuously 
with time. In addition, in contras t  to the quasis ta t ionary mode, a continuous increase  in the slope of the 
par t ic le  densi ty profile occurs  while there is an insignificant change in the width of the magnetic field front, 
i.e., the solution approximates  a discontinuous solution. This happens for  Mach numbers  M, ~ 2.8. 

Figure 3 shows the dependence of the maximum slope of the par t ic le  density profile ~N/( 0x (curves 1 
and 2) and of the magnetic field (curves 3 and 4) in a shock wave with electron thermal  conductivity and mag- 
netic viscosi ty present  for the case A = 2.7, ~ = 10, which is typical of Mach numbers 2.8 ~ M ~ 3.3. 
Curves 1 and 3 correspond to the value fi = 0,and curves  2 and 4 to the value fi = 2. It is c lear  f rom the 
curves  that f rom some point in t ime ~- CT depends on boundary conditions) the densi ty  profi le can be char -  
ac ter ized by an approximately constant width A1; in this ease the shock-wave velocity is prac t ica l ly  un- 
changed. All this makes it possible to speak of a quasis ta t ionary mode in which there is compensation of 
the nonlinear broadening produced by thermal  conductivity. 

Figure 4 shows the spatial profi le of the magnetic field, 1, of par t ic le  density, 2, of the density der iva-  
tive, 3, and of the derivative of the magnetic field, 4, in the shock front  during an isomagnetic discontinuity 
C A = 2 . 7 , ~ < = 2 0 , f l  =2 ,  M ~  3.1). 

The width of the magnetic field front is considerably g rea te r  than the width of the density front (Fig. 4), 
i.e., a density discontinuity occurs  during a prac t ica l ly  constant magnetic field - an isomagnetic density dis-  
continuity, which was obtained with external magnetic field amplitudes 2.7 -< A -< 4 and shock-wave ampli -  
tudes 2.9 ~ H ~ 3.0. With fur ther  increase  in the external field CA > 4), a continuous r i se  in amplitude and 
velocity of the shock wave occurs  because of the nonstationari ty associa ted with the piston, which leads to 
breakdown of the shock wave. 

Figure 5 shows typical spatial profi les  of the magnetic field H (curves 1, 2, 3") and of the par t ic le  den- 
si ty N (curves 4, 5, 6) at success ive  t imes T = 1.4, 1.6, 1.8 for the nonstationary mode (A = 8, % = 10, fl = 2). 

Critical Mach numbers 3.4 ~ M, ~ 3.8, which charac te r ize  a shock wave with thermal  conductivity 
and magnetic v iscosi ty  presen t  at  the t ime of breakdown, were obtained for magnetic field amplitudes 5 -< 
A _< 8 at the p lasma boundary; cr i t ical  shock-wave amplitudes were 3 ~ H, ~ 3.2. 
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1) For  sma l l  Mach numbers  
insignif icant  i nc rease  in the width of the front.  

2) A quas i s t a t ionary  i somagnet ic  densi ty  discontinuity is obtained for Mach numbers  2.8 4 M ~ 3.3 
with e lec t ron  the rma l  conductivi ty presen t .  

3) Breakdown of shock waves  in the p r e s e n c e  of the rma l  conductivity is observed  for  Mach numbers  
M,  > 3.4. 

In conclusion,  the au thors  thank R. Z. Sagdeev for in te res t  in this work.  

We compare  the par t ic le  veloci ty  ]u-MVA] behind the shock front  
(in the wave sys tem)  with the veloci ty  of ion-acous t ic  waves  c s = T~-T~-i. 

For  smal l  Much numbers ,  c s < Iu-MVAI . As the shock-wave 
veloci ty inc reases ,  the ion sound veloci ty  r i s e s  because  the p l a s m a  
t e m p e r a t u r e  inc reases ,  and finally the veloci ty  of ion sound becomes  
equal to the par t i c le  velocity re la t ive  to the shock front.  For  the s t a -  
t ionary  c a s e  this equality occurs  for a magnet ic  field value behind 
the shock front  equal to the c r i t i ca l  value H,  -- 3. 

Thus the t ime of breakdown for  a shock wave with finite conduc- 
t ivi ty  and e lec t ron  the rmal  conductivity p r e sen t  co r re sponds  to the 
t ime of equalizat ion of ion sound veloci ty  and par t i c le  ve loci ty  behind 
the shock front.  

F r o m  the solution of the nonsta t ionary  p rob lem one can a r r i v e  
at the following conclusions:  

the shock wave is quas is ta t ionary  and the rma l  conductivity leads  to an 
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