EFFECT OF THERMAL CONDUCTIVITY ON
STRUCTURE AND CRITICAL PARAMETERS OF
SHOCK WAVES IN PLASMA
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Results are presented for a numerical solution of the problem of shock-wave propagation in

a cold, low—~density plasma across a magnetic field with finite conductivity and electron ther-
mal conductivity present; a comparison is made with results obtained from a solution without
consideration of thermal conductivity. It is shown that the effect of thermal conductivity can
be neglected for small Mach numbers (M<2.5). An isomagnetic density discontinuity is ob-
tained for Mach numbers 2.8 € M £ 3.3. Increase in the magnetic field amplitude at the bound-
ary of the plasma leads to a breakdown of the isomagnetic discontinuity. The critical Mach
numbers which characterize the shock wave in this case are M, > 3.4,

At the present time one should accept as proven the fact that there are critical Mach numbers M, for
which a qualitative change occurs in the structure of shock waves in a low-density plasma [1, 2]. As is well
known, a similar phenomenon occurs in an ordinary thermally conducting gas — an isothermal density dis-
continuity. A careful study of stationary shock waves in a plasma without magnetic field but including Cou~
lomb conductivity and thermal conductivity was made by V. S. Imshennik [3]. He showed that both continu-
ous and discontinuous (isoelectron thermal discontinuity) solutions were possible depending on the velocity
of the wave. Morton [4] studied stationary and nonstationary compression waves in a two-fluid plasma with
magnetic field present; however, the effect of energy dissipation,which is necessary for creation of shock
waves, was not considered in his paper and the effect of thermal conductivity was not taken into account.
From an analysis of the singularities of the equations for the structure of a shock wave with conductivity
and thermal conductivity present, Woods [5] found the critical parameters for which the solution became
discontinuous. The authors investigated the problem of the structure of nonstationary and stationary shock -
waves in plasma across a magnetic field including consideration of conductivity and electron thermal con-
ductivity.

1. SYSTEM OF EQUATIONS AND ITS STATIONARY SOLUTIONS

For one-dimensional motion of a two-fluid quasineutral plasma across a magnetic field including con-
sideration of conductivity, dispersion, and electron thermal conductivity, we have the following system of
equations:
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Here, p = N(m; + m,) is the plasma density, N is the number of particles of each kind per unit volume,
o is the plasma conductivity, and y is the coefficient of electron thermal conductivity. The last two terms
in the braces in the energy equation give the Joule heating of the electrons and the effect of thermal conduc-
tivity.

For solution of the stationary problem we shift to a coordinate system connected with the wave. We
shall consider motion on a typical spatial scale which results from the finite conductivity but not from dis-
persion; we therefore neglect dispersion effects, which are proportional to electron mass. Using the con-
tinuity of mass and momentum flow and shifting to dimensionless variables, having selected as the scales
for density, velocity, pressure, magnetic field, length, and collision frequency the quantities p,,

VA=H0/l4nPO’ H02/4n, HO

c? . eHo
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o= Noez/mev , ¥ = const is the effective collision frequency), we obtain
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Here M is the Mach number (M = U/V,, where U is the wave velocity), u is the particle velocity in the
wave system,

B:-—K'x: const, K =

1 . __V
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Thus the problem of the structure of a stationary shock wave with finite conductivity and electron ther
mal conductivity present reduces to a system of two ordinary equations (1.2). The singularities 0 and 1 of
system (1.2) correspond to the stationary states of the plasma ahead of the wave (unperturbed state) and be-
hind the wave (perturbed state).

w=M, Hy,=1, p, (1.3)
M _ p—p05(H2E—1) _ pI(4M — 1) 4 0.5 (H1 —1p
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Equation (1.4) is the Hugoniot condition for motion across a magnetic field.

As analysis shows, the solution in the case under consideration is discontinuous when the coefficient
of the derivative goes to zero, i.e., p; = Muy, whence we obtain an equation for determination of the critical
parameters M, and H, of a shock wave:

1 2M 2
IVI*2+po—‘2—(H*2";‘1)_ H: =0.

Under actual conditions py <« 1; therefore, using Eqgs. (1.4), we obtain an equation for the critical am-
plitude of the magnetic field behind the wave front:

H3—-3H*+2H,—~6=0
whence it follows that H, = 3,

Thus, with thermal conductivity and conductivity present, the profile of the shock wave is monotonic
for Hy < Hy =3, M< M, = 3.46 and discontinuous for Hy > 3, M > 3.46. This result, of course, agrees with
the result of [5], where it was obtained on the basis of classification of the singularities of the original equa-
tion system. Note that the value of the critical Mach number, M, = 3.46, is independent of the specific form
of the thermal conductivity coefficient. ‘

If the effect of thermal conductivity is neglected, conductivity alone being present, the critical param-~
eters of a shock wave are H, ~ 2.66, M, ~ 2.76.
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We shall determine numerically a nonlinear solution of the problem of the structure of a stationary
shock wave in a plasma with conductivity and thermal conductivity present. For this purpose it is neces-
sary to make an analysis of the kinds of singularities 0 and 1 which correspond to the unperturbed and per-
turbed plasma states. Linearizing Egs. (1.2) near the singularities, i.e., assuming that

U=y, +u, H=H;i+H W <€uo, H' <€ Hoy)

we obfain a characteristic equation, the roots of which for the unperturbed state are

;O — (1_”/1,@ i — ))

1t then follows that the roots k(oz mdependently of Mach number M > 1, are real and of the same sign;
therefore the singularity 0 is a node. The roots k@Wof the characteristic equation for the perturbed state
depend on Mach number; for M < 3.46 and Hy < 3, they are real and of opposite sign (singularity 1 is a sad-
dle point), and for M > 3.46 and H; > 3, they are real and of the same sign (singularity 1 is a node). Thus
when the shock-wave velocity is less than critical, the singularities 0 and 1 form a node-saddle-point pair
as in an ordinary gas.

Proof of the existence and uniqueness of the solution in this case can be demonstrated as in [6], for
example. When the shock-wave velocity is greater than critical, it is impossible to construct a profile which
is continuous over all functions.

Using the analysis made above, a solution was obtained numerically for system (1.2) which gives the
structure of a stationary shock wave.

Given below are the widths A 0 of the particle density profile and Ay of the magnetic field profile for
various Mach numbers.
H. 2.60 2.0 2.8 2.90 2.93 2.95 2.98 2.99
M 2.66 2.83 3.02 3.23 3.29 3.32 3.41 3.44
Ap 0.46 0.3 0.24 0.16 0.14 0.12 0.10 0.09
Ag 0.90 0.80 0.70 0.60 0.58 0.56 0.55 0.53

As usual, the width of the front is determined from the expressions

1 Hy—1
Ap‘gdp/dnma'x’ AH_ldH/dzlmax

As the Mach number increases, the density profile becomes increasingly steeper as compared to the
magnetic field profile.

1t is clear that the width of the density profile decreases by approximately a factor of 5 with a change
in Mach number from 2.66 to 3.44 while the width of the magnetic field profile falls by a factor of approxi-
mately 1.5. The sharp increase in the slope of the density profile when M — M, = 3.46 is evidence that this
profile tends to become discontinuous. Calculations for various thermal conductivity coefficients x show
that for an unchanged width of the magnetic field front the width of the density profile increases as the ther-
mal conductivity coefficient increases. Thus, for the case M = 3.44, we have

Ap = 0.09 for B = 2.0,
Ap = 0.18 for = 20.

2. NONSTATIONARY SOLUTIONS

Y T T The equation system (L.1), written in dimensionless variables
P ' ! ;1 X\ and Lagrangian coordinates, was solved on a computer using a dif-
} \\ ference scheme of second-order accuracy. Assuming that at the
AN\

initial time a uniform, quasineutral, cold plasma (py <« H3/ 87 ) of
N density N, occupies the region 0 = x =a (direction of unperturbed
magnetic field coincides with the x axis), on the boundary of which
the magnetic field is increasing in accordance with the expression

vV 9 z H=1+A(l-¢e" o T)(9 is the frequency of the external field in units
7% CF 3 w 7 of w; A is the amplitude of the external field in units of Hy), we
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write the following initial and boundary conditions for the solution of system (1.1):
HO,t)=1+4(1—e%)
@9 =0, IL@©m=0
X @m=0, L@mn=0
u(a,v)=0, H(z 0 =N(@0)=1
w0 =p@E, 0O=0

Here, T is time in units of ®/w, T is electron temperature in units of H%/ 87Ny, and p is pressure in
units of H}/8r .

We turn to a discussion of the results obtained for a solution of the given problem for small Mach
numbers M < 2.5, For amplitude values 1.5 = A < 2 at the boundary of the plasma the shock wave produced
is quasistationary, i.e., from some point in time 7 (7 depends on the boundary conditions for the magnetic
field) the velocity and amplitude of the wave and the width of the front remain practically constant.

Note that the Mach number for a shock wave was determined from the points of maximum slope of the
magnetic field, i.e., M = (xy-X,)/ (7 y~T¢), where %, and x, are the Eulerian coordinates of max | 98/ 8x| in the
shock front at the times 74 and 7.

Typical profiles of the magnetic field H (curve 1) and of particle density N (curve 2) for a quasistation-
ary shock wave

(A=15 0=02, =x=10, 8=2, M=22)

which are shown in Fig. 1 as a function of the Eulerian coordinates, have the following characteristic regions:

1. the piston region, which is associated with diffusion of the magnetic field into the plasma to a dis-
tance 6 ; ~ (c*/4r0)¥?; in this region there is a contimuous transition from the magnetic field maximum at
the boundary of the plasma to a value equal to the amplitude of the shock wave; the temperature behaves in
a similar manner, and the density rises from zero to a maximum value;

2) the region of piston-shock-front transition, in which the magnetic field, temperature, and density
are practically unchanged;

3) shock front with a width A equal to the dissipative dimension A ~ cz/ 4ToVA.

The density profile lags behind the magnetic field profile by a distance 6 4~ 0.66 ~ c¢/4n0V A(M-1),as
should be expected for a resistive dissipative mechanism in the shock front. A characteristic feature of a
quasistationary shock wave is the presence of region 2, which arises at the time the wave leaves the piston.
Note that for large values of the external field amplitude (for example, A =10, 6 = 0.2) a shock wave is not
formed and "piling-up" of the plasma by the external magnetic field occurs,

Values of the electric fields and of the potential can be found from the equations of motion:

E, = my [ (p+ m; — mg Hﬂ)

—eN(mi—l-me)?z— m; B
e x 1 * oH ¢
WH Ay @ 0H -
i Ho By =+ (v — =55, (p._SExdx.
x

The behavior of the y component of the electric field is similar to the
behavior of the magnetic field; the x component of the electric field has a para-
bolic form with the maximum in the shock front since in precisely that
place a large field is needed for realization of the quasineutrality and of the
condition. The dependence of the x component of the electric field (curve 1)
and of the potential (curve 2) on the Eulerian coordinates in a quasistationary
\\ shock wave with the parameters A = 1.5, 0 = 0.2, v = 10, and 8 = 2 is shown

in Fig. 2. The dashed line gives the value of the potential ¢, behind a sta-
\ tionary shock front, which was obtained from the Hugoniot condition
N

¢, = M? Vmgme (1_ 1 \ V 4 Hob

2% ~ITI§, ¢

.
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A comparison of the solutions of the problem for small Mach numbers (M < 2.5) for thermal conduc-
tivity coefficient values ¥ = 0 and y # 0 showed that inclusion of thermal conductivity leads only to an in-
significant increase in the width of a quasistationary shock front (width of shock front for § = 2 was approx-
imately 2% greater than width of the front for 8 = 0), i.e., the effect of thermal conductivity on the structure
of the shock front is insignificant for small Mach numbers., The solution of the nonstationary problem for
M < 2.5 is in good agreement with the stationary solution.

We consider the results for Mach numbers M > 2.5. For comparison we make a brief analysis with-
out consideration of electron thermal conductivity (x = 0). Increase in the magnetic field amplitude at the
plasma boundary leads to an increase in amplitude and velocity of the shock wave. In this case there is an
enhancement of the effects of nonlinearity and nonstationarity,through which the structure of the shock front
is qualitatively changed. Thus for an external magnetic field amplitude A > 2.8, the shock wave without con
sideration of thermal conductivity is nonstationary, i.e., its velocity and width of front change continuously
with time. In addition, in contrast to the quasistationary mode, a continuous increase in the slope of the
particle density profile occurs while there is an insignificant change in the width of the magnetic field front,
i.e., the solution approximates a discontinuous solution. This happens for Mach numbers M, > 2.8.

Figure 3 shows the dependence of the maximum slope of the particle density profile 0N/ 9x (curves 1
and 2) and of the magnetic field (curves 3 and 4) in a shock wave with electron thermal conductivity and mag-
netic viscosity present for the case A = 2.7, » = 10, which is typical of Mach numbers 2.8 < M £ 3.3.
Curves 1 and 3 correspond to the value § = 0,and curves 2 and 4 to the value B = 2. It is clear from the
curves that from some point in time 7 (7 depends on boundary conditions) the density profile can be char-
acterized by an approximately constant width Ay; in this case the shock-wave velocity is practically un-
changed. All this makes it possible to speak of a quasistationary mode in which there is compensation of
the nonlinear broadening produced by thermal conductivity.

Figure 4 shows the spatial profile of the magnetic field, 1, of particle density, 2, of the density deriva-
tive, 3, and of the derivative of the magnetic field, 4, in the shock front during an isomagnetic discontinuity
(A=27%=20,8 =2, M~ 3.1).

The width of the magnetic field front is considerably greater than the width of the density front (Fig. 4),
i.e., a dengity discontinuity occurs during a practically constant magnetic field — an isomagnetic density dis-
continuity, which was obtained with external magnetic field amplitudes 2.7 = A = 4 and shock-wave ampli-
tudes 2.9 € H £ 3.0. With further increase in the external field (A > 4), a continuous rise in amplitude and
velocity of the shock wave occurs because of the nonstationarity associated with the piston, which leads to
breakdown of the shock wave,

Figure 5 shows typical spatial profiles of the magnetic field H (curves 1, 2, 3} and of the particle den-
sity N (curves 4, 5, 6) at successive times 7 = 1.4, 1.6, 1.8 for the nonstationary mode (A = 8, w = 10, 8 = 2).

Critical Mach numbers 3.4 € M, £ 3.8, which characterize a shock wave with thermal conductivity
and magnetic viscosity present at the time of breakdown, were obtained for magnetic field amplitudes 5 =
A = 8 af the plasma boundary; critical shock-wave amplitudes were 3 € H, £ 3.2.
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We compare the particle velocity lu~MV AI behind the shock front

NG J : {in the wave system) with the velocity of ion-acoustic waves cg = v T/m;j.
’
N For small Mach numbers, cg < lu—MVAI . As the shock-wave
\ & velocity increases, the ion sound velocity rises because the plasma
4 \ ,\ temperature increases, and finally the velocity of ion sound becomes
IR Vg N equal to the particle velocity relative to the shock front. For the sta-
A

\
/{ \ \\“} tionary case. this equality occurs for a magnetic field value behind
|
l

the shock front equal to the critical value H, = 3.

{ .
i l
J o r\ ‘\ Thus the time of breakdown for a shock wave with finite conduc-
/ ,’ /’ \\q& Y tivity and electron thermal conductivity present corresponds to the
/ // : time of equalization of ion sound velocity and particle velocity behind
l,// y 5/ the shock front.
Fig 5 e From the solution of the nonstationary problem one can arrive

at the following conclusions:

1) For small Mach numbers the shock wave is quasistationary and thermal conductivity leads to an

insignificant increase in the width of the front.

2) A gquasistationary isomagnetic density discontinuity is obtained for Mach numbers 2.8 z M ¢ 3.3

with electron thermal conductivity present.

3) Breakdown of shock waves in the presence of thermal conductivity is observed for Mach numbers

M, >3.4.

144

In conclusion, the authors thank R. Z. Sagdeev for interest in this work.

LITERATURE CITED

R. Z. Sagdeev, "Collective processes and shock waves in a low-density plasma," in: Reviews of
Plasma Physics, Vol, 4, Consultants Bureau (1966).

R. Kh, Kurtmullaev, V. L, Masalov, K, L. Mekler, and V. 1, Pil'skii, "Isomagnetic discontinuity in
a strong collisionless shock front," ZhETF Pis. Red., 7, No. 2 (1968),

V. S. Imshennik, "Structure of shock waves in a high-temperature dense plasma," Zh, Eksp. Teor,
Fiz., 42, No. 1 (1962).

K. W. Morton, "Finite amplitude compression waves in a collision~free plasma,” Phys. Fluids, 7,
No. 11 (1964).

L. C. Woods, "On the structure of collisionless magnetoplasma shock waves at supercritical Alfvén-
Mach numbers," J. Plasma Phys., 3, No. 3 (1969).

B. L. Rozhdestvenskii and N. N, Yanenko, Systems of Quasilinear Equations [in Russian], Nauka,
Moscow (1968).



